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A dynamical model for fluid membranes is presented that takes into account local conservation of the
membrane area. It is purely relaxational, obeys detailed balance, and is manifestly covariant. The
tangential flow due to the conservation of area is described by a velocity field. As an application the
dynamical behavior of a nearly cylindrical membrane is considered, including relaxation rates and stabil-
ity properties. Also, the propagation of perturbations of a planar membrane is investigated, leading to
logarithmic corrections to known results for a model without area conservation.

PACS number(s): 68.15.+¢, 87.45.—k

1. THE MODEL

Fluid membranes are two-dimensional macroscopic
systems formed by amphiphilic molecules which had no
rigid correlation, but diffuse freely in the membrane area
(for a survey, see [1,2]). The diffusive motion is much fas-
ter than the geometrical motion of the membrane. More-
over, the membrane has a practically vanishing surface
tension.

In the well-known static model by Helfrich [3], the
membrane is described by a mathematical, two-
dimensional manifold embedded in a three-dimensional
space. Its thickness and microscopic structure are not
taken into consideration. Consequently, the energy per
area is only a function of the local curvature.

We want to extend this theory to a dynamical model
which respects the incompressibility of the membrane
material [4]. Since there is no exchange of molecules be-
tween the membrane and its environment, the membrane
area is locally conserved. Thus a deformation of the film
is connected with a flow of material. Because of the high
in-plane viscosity and of the viscosity of the surrounding
fluid, the motion of a membrane is overdamped, and we
will choose a purely relaxational model. We will not in-
clude hydrodynamics interactions with the surrounding
fluid. This is a strong simplification, but makes the
mathematical treatment much more simple and makes
the effect of incompressibility of the membrane transpar-
ent. This model can therefore be seen as a step toward a
full treatment of the dynamics of fluid membranes. How-
ever, the embedding fluid is incorporated insofar as we
have added a pressure difference to our model. On the
other hand, a membrane embedded in a gas is perceiv-
able. Dynamical models for fluid membranes embedded
in a fluid already exist in the literature, but they are
bound to a special geometry [5,6]. In this paper, we con-
sider hydrodynamics on a general curved manifold (the
membrane) which itself is moving in time. To describe
this situation we have to use the language of (classical)
differential geometry.

The time-dependent D-dimensional manifold in a
(D +1)-dimensional Euclidean embedding space is de-
scribed by a Euclidean vector X(x ;t), with (D +1) com-
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ponents, each depending on D internal coordinates x‘ and
time ¢.

Because of the in-plane diffusion of the molecules there
is, contrary to the case of a tethered membrane, no pre-
ferred coordinate system, i.e., the theory has to be covari-
ant in the language of differential geometry. This means
that the equation of motion must be invariant under the
change of coordinates

x—ox'=x'"(x;t). (1)

The coordinate transformations are allowed to be time
dependent [7]. In order to formulate the model we tem-
porarily use Lagrangian coordinates which move with the
fluid. Then X(x ;¢) (with x constant) is the trajectory of a
fluid element with index x. U(x;?)=9,X(x;¢) is the ve-
locity field of the membrane, and is a scalar under trans-
formations of the internal coordinates. The geometrical
change is given by the component of U normal to the sur-
face v, =N-U, while the tangential parts u;=9,X-U de-
scribe the flow of material

9,X=v,N+u'3;X .

Here N is the unit normal vector to the surface, and 9;X
is a tangential vector with 3, =3/dx’. The first term de-
scribes the geometry, and the second term describes the
flow.

If the density of the membrane constituents remains
constant, the number of particles dN in a fluid element is
proportional to d 4 (x;t)=Vg (x;t)dx. This yields the
constraint 3,V'g (x;t)=0, where g is the determinant of
the metric tensor g;; =9;X-9;X.

With the decomposition of 3,X in its tangential and
normal part, and the representation of the extrinsic cur-
vature tensor K;; = —9,X-9;N, one finds (see also [8])

0=09,1/det(3,X-3,X)
=vgg'd,X-3;8,X
=vgg"3,;X-3;(v, N+u*3,X)
=Vg(—Kjv,+Du') .

The local conservation of area can be written in manifest-
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ly covariant form:
v,K=Du", ()

where K is the trace of K, i.e., K =K;/=g"K;, and D, is
the covariant derivative (for a short survey of differential
geometry of manifolds, see [1]).

The fundamental degrees of freedom are the positions
of the fluid elements X(x ;t). For their motion we postu-
late a purely relaxational model obeying a detailed bal-
ance with the static model of David [9]. As already men-
tioned, the assumption of pure relaxation means that we
are in the viscosity-dominated regime, corresponding to
the Stokes regime in ordinary hydrodynamics. The con-
straint of locally constant area is enforced by a Lagrange
multiplier ¢(x ;¢).

In Lagrangian coordinates the model is

1 0H

a,X(x;t):—lmm'Fg(x;t)
__1 D, g4) 3V 8 )
Va4 st o
J
= dey¢(y)8‘/§(y)= —— [z v
Vg (x) 6X(x) Vg (x)

1 — .
= — —4J. \/ ug.
Ve 3;(¢Vgg"9;X)

= -_gijai‘ﬁajx—(bAcovx :

Together with the decomposition of 9,X and Eq. (2), we
obtain

. 5. H
v, N+u'd,X= —kgc—i +279,43, X+ A, X ,
c
v, K=Du'",
where 8. H/8.X=(1/Vg)8H/8X is the covariant

derivative of H with respect to X. It can be shown [10]
that

8. H
5.X

=(Ao K —LK*+KKYK;)N , ©6)

i.e., this variational derivative is perpendicular to the sur-
face. Finally, for the normal part of Eq. (3) we obtain

[4

5.X

v, =—AN-——+¢K , @)

and, for the tangential part,
u;=0;¢ . (8)

The Lagrangian multiplier ¢ can now be identified both
as a varying surface tension and as the potential of the
tangential velocity field. Substituting u;,=3;¢ into Eq.
(2), we obtain the manifestly covariant equation

9, X A X=0,K=g"D;3;¢=0.,4 , 9)
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with the constraint
9,Vg (x;1)=0 )

The factors 1/V'g are needed to render the equation of
motion covariant. A random force £ has been included,
but may be ignored if one is not interested in fluctuations
of the membrane. The remaining deterministic part of
the equation describes the macroscopic, overdamped
motion of an incompressible membrane.

H =H[X] is the Helfrich Hamiltonian

H=1[dPVg (A X)= [dPxVgK?/2, (5)

where A_,, is the covariant Laplacian (Laplace-Beltrami
operator), and K /2 the mean curvature. Commonly a
term proportional to the Gaussian curvature is added to
H. The integral over the Gaussian curvature is a topo-
logical invariant, and unimportant if changes in the mem-
brane topology do not occur. Next we are looking for a
manifestly covariant representation of (3). First we cal-
culate

()3, X(»)-2-8(y —x)
ay/

I

which determines ¢ up to a constant. Together with (7)
this equation is the starting point of the following discus-
sion. Occasionally we will compare this model with a
simpler one without local area conservation, which has
the equation of motion [11]

c

5.X

v, =—AN-—— +AoK , (10)

with a constant surface tension o instead of ¢.

It is possible to eliminate the multiplier ¢ from Egs. (7)
and (9). This induces effective long-range forces. Multi-
plying Eq. (7) by K and substituting the result into Eq. (9)
leads to

A K%p=—AKN o H (1
cov¢ ¢_ BCX ’
and finally to
8.H
v, =[] —K(—A,,+K*'K] | —AN- (12)
8.X

Here, I is the identity and (—A,,,+K?)”! the inverse of
the operator —A_,,+K?2. In the following sections we
will apply the model to the relaxation of small deforma-
tions of cylindrical and planar stationary membrane

configurations.
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II. THE NEARLY CYLINDRICAL MEMBRANE

We first study the deterministic relaxation of perturba-
tions of a cylindrical membrane, and calculate the disper-
sion rates of the elementary modes (for related problems,
see also [5]). The cylinder is considered to be of fixed
length (unlike in Ref. [12], where a cylinder of finite but
variable length is considered), and we are interested in
the limit of infinite length. The incompressibility of the
membrane leads to an additional band of soft modes
when there is no pressure difference between the inner
and outer regions of the cylinders. Finally, we discuss
the stability of the cylinder as a function of the pressure
difference. For that purpose we add a force ApN to our
model, with the constant pressure different Ap. Then the
equations of motion are

—MA K —1/2K*+KKVK;;)+¢K +AoK+AAp ,
(13)
le=Acov¢ ’ (14)

where Ao is the spatially constant part of the potential ¢.
The perturbated surface is described by

X(x,8)=X(x)+&x,N(x) , (15)

where £ is the displacement normal to the reference
membrane X, and 1s a scalar field with respect to the
metric induced by X. Linearizing the equations in § and
é, we have v, =9,£+O(£?).

A stationary state of the membrane means v, =0 and
¢=0. If the mean curvature K is constant, this leads to
the static equilibrium condition [10]

—%I%3+I%I%ij1?ij=alz'+Ap . (16)
The cylinder of unit radius is represented by
cosy
X(¢,2)= |siny | . 17)
z

With Eq. (16) we obtain the (formal) surface tension
=21+Ap. The linearized equations of motion for the
normal displacement are

3,6=—A[(3]+32)%6+233£+£]

—¢+AAp[(3+I2E+E], (18)
—8,6=(3;+30)¢ , (19)
which are solved with the ansatz
E,z;t)=Eje ~Heitleis | (20)
d(P,z;t)=ge ~Heinvei® 21
n=0,t1,£2,...;—0 <g<ow .
This leads to

—afy=—A[(n?+¢??—2n2+1]&,
—¢ot+AAp[—(n2+gH)+11&,,
a§0=—(n2+q2)¢0 s

and finally to the dispersion relation

2
R re e TR

+Ap(n*+4¢%)—Ap]. (22)

Without a pressure difference and without local area con-
servation (10), Eq. (22) reduces to

%=[(n2+q2)2—2n2+l] , 23)

where, for stability reasons, the surface tension is set
equal to 0 =1. Table I shows the rates of dispersion to
the lowest order in g for Ap=0. In the case of an in-
compressible membrane the peristaltic modes (n =0)
form a band of soft modes. For these modes to relax, ma-
terial has to flow over large distances which diverge in
the limit ¢ —0. The flow of material over a long distance
requires a correspondingly long time. If there is no local
area conservation, membrane material can appear and
vanish instantaneously and thus the dispersion rate has a
gap at ¢ =0. For both models bending modes (kink
modes) form a soft band. However, the values of the re-
laxation rates in the limit ¢ —0 for the model with in-
compressibility is half that of the model without local
conservation. For higher bands, the differences between
the two models decreases.

Critical pressure

With a nonzero pressure difference Ap we find the fol-
lowing dispersion rates for our model:

n2
= - +9 _ 2+ 2 2_|_
}\. T+ni+q 2[(n 1)*+2n’g*+q

+Ap(n?+g%—1)]. (24)

For the (n =0) band especially, we have

2
a__ _9g 4 2
== +1+Apg2—A
X 1+q2[q pq-—Ap]

=q%(1—Ap)+0(g*) , (25)

which shows that the cylindrical co‘n/ﬁ_guration becomes
unstable if Ap > 1. At Ap=—2(1+V'2), the mode with

TABLE 1. Rates of dispersion for the cylinder to the lowest
order in q.

No local Local area—
area—
conservation conservation
n a/A= a/A=
0 1+ - - - q2+ e
Peristaltic
modes
+1 2q2+... q2+...
Kink modes
+2 9+ - - - %X9+'°-




5246

the longitudinal frequency ¢*>=1+V?2 is marginal
(a=0). If the pressure difference Ap lies in the interval
—2(1+V2) < Ap <0, the dispersion relation is similar to
that of rotons in superfluid “He.

For the n =*1 band, we have

E:ij__qi 4+(2+A ) 2
X 2+qz[q p)q°]

=1422+Ap)+0(g*) , (26)

so that these modes become unstable for Ap < —2.
Higher bands (|n| > 1) are unstable for Ap <1—n? and

otherwise stable. The relaxation rates are

a_ n¥n?*—1)

= = __—._[ n

A 1+n?
Summarizing the linear stability analysis, we find that the
infinitely long cylinder is stable against small deforma-
tions in the pressure difference interval —2 <Ap <1, and
unstable outside this interval. A negative Ap is
equivalent to an excess pressure in the outer region.

2—-14+Ap]+0(g? .

III. RELAXATION
OF A NEARLY PLANAR MEMBRANE

Since the mean curvature of a flat manifold vanishes,
the condition of local area conservation introduces non-
linearities. These already show up in the relaxation of a
nearly flat membrane in the lowest order of perturbation
theory. In fact this leads to a nonlinear propagator of
mean-field type, which is then used to calculate the
dispersion of a Gaussian deformation of a planar mem-
brane.

A nearly flat membrane in the Monge representation
(see [13] and [1]) is described by

X(X,t)=(X,f(X,t))

where f(X,t) is the height of the surface at the point X,
which is a D dimensional Euclidean vector. It can be
shown that v, =f /V'g, so that our equations of motion
(7) and (9) read

. )LNSH—F( K +A (27)
‘/E SCX ¢ x U[f] ’
———f =
‘/E K Acov¢ ’ (28)
where
K=d, |—=a,f
i ‘/E i

and Vg =1/1+9,19,f. The zero mode (constant part)
of ¢ is explictly written as Ao [ f].

In an expansion around f we have to give a special
value to o in order to avoid infrared divergences. To the
lowest order, we find
J
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fo=—MAX—aoAfo) , (29)
Ado= —A[Af (A2 fo—0ToAf))] - (30)

Hence ¢, is well defined only if the spatial average of
Afo(A2fy—0,Af,) vanishes. This yields

defoOAzfo (31)
g T . 5 -
O T dPx(Afo R

The quantity o, is a formal surface tension, and causes
conservation of the total area f dPxVg g to the lowest or-
der:

3, [a’xvg = [d*xa,9f) [2+0(s9)
= [dPxAff+0O(f*
=—A [ dPxAf(AXf —aAf)+O(f)
=0+0(f*%) .

The physical reason for this is that modes with p2 < ||
are growing, and modes with p%>|o,| are decaying.
Moreover, o, allows an iteration of the perturbation ex-
pansion in f. Thus it is possible to determine ¢ to the
lowest order of perturbation theory, which in turn can be
used to obtain the next order in f.

IV. RELAXATION
OF A LOCALIZED DEFORMATION

The deformation of a flat membrane at an arbitrary in-
terior point is connected with a flow of material from
infinite distances, because a deformed membrane has
more area than an unperturbed flat one. Consequently, a
localized perturbation will disperse in time, and the ex-
cess area will run off to infinity. We now will calculate
the relaxation of a  Gaussian deformation
f (%) =< exp[ —+(ux)?] to the lowest order, and determine
the asymptotic time dependence of their typical length
scale. In Fourier space, the equations of motion (29) read

3, fk,t)=—Ak*+ok>)f(k,1),
_ Jd%ptI7 1)
fd p I F1%(P)

The initial conﬁguratxon is f(k,t =0)=F,exp(—k?2/u®).

It can be seen that the integral equation for f is
F(k,)=F,exp [—xk‘*z—Aszo’dm<r)—k2/y2 ] . (32)

In order to solve Eq. (32) it is convenient to introduce the
moments

M, 0:= [ dk kP lexp —uk%—zxszo'dm(r)—2k2/p2] , (33)
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where kP ~1dk comes from the area element in the case
of no angular dependence. In terms of these quantities
we have

M, [dPx(Vf)?=2[dPx(Vg —1)+O(f4 .

A partial integration leads to the recursion relation

8Az 4A [fdTo(r)
= M, — M
" 2n+D "2 2n+D el
2
A
+ 2n +D
From this equation we obtain for the ratios
Q,:=M, /M, the continued fractions
0,(n= D (34

4 [Ldr o)+ 2 4810, 4 (1)
7

and o(7)=—Q,(7). The time derivative of Eq. (34) for

=1 leads to
d 1 _ 1 _400,+80Q,+8AQ),) (35)
dt QO D 2 1 1/ -

On the other hand, the derivative of M, with respect to
time yields

) M,

n+1>
which especially implies M; = —2AM;+2AM ;=0 and
M, M M, M
d1 _dM M, M MM
dt Q, dt M, M, M, M, M,
=—2A0,+2AQ, . (36)

If we eliminate d /dt(1/Q,) from the last two equations,
we obtain (for D =2)

Q, =1Q1+IQ1 ’ (37
1

—=—A|d (r)+—
: f TQH(7 2

+2th2 . (38)

The second relation is Eq. (34) for n =1. Now we
differentiate (38) with respect to time and substitute it
back into (37). From this we obtain a nonlinear second
order differential equation for Q,:

2120, + 6t+AQ 0,+30,=0, (39)

which allows us to calculate the asymptotic time behavior
of Q,. For that purpose we introduce the dimensionless
quantities 4 and B:

0,

A(t)=t—,
Q1

B(1):=

MQ} ’
which obey the equations of motion
dA

= =2 —A?—3-14B, (40)
98 ——p-248, 1)

where d/ds:=td /dt. This system of differential equa-
tions has the wunstable fixed point (where
dA/ds =dB/ds =0) (A*,B*)=(—2,0) and the stable
fixed point (4*,B*)=(—1,0). With our initial condi-
tion ( 4, B) runs into the stable fixed point. To study the
behavior near the stable fixed point, we define the shifted
variables a:=A +1,b:=B. The equations of motion
now read

ﬂ——a —a+ib—1ab, (42)
ds

db _

i 2ab . 43)

If a and b are small, a will quickly relax to
ay(s)=1/4b(s)+0(b?). Due to this, b approximately
obeys the equation

Q——za b=—1b%, (44)
ds
which is solved by b(s)=b(In(t/t5))=2/s. Thus
Q;~t V2In(t /t,)!"?, t — o, which implies
L~t"Y1n(t/ty) V4, t>w (45)

for the characteristic length L(z) of the deformation,
since dimensionally Q, ~L ~2. Obviously the equation of
motion for a fluid membrane without conservation of
area (10) leads to L ~!/4. We see that incompressibility
causes a logarithmically retarded dispersion of a localized
perturbation of a flat membrane.
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